Rapid effects of acute anoxia on spindle kinetochore interactions activate the mitotic spindle checkpoint.

نویسندگان

  • Rahul Pandey
  • Sebastian Heeger
  • Christian F Lehner
چکیده

The dramatic chromosome instability in certain tumors might reflect a synergy of spindle checkpoint defects with hypoxic conditions. In Caenorhabditis elegans and Drosophila melanogaster, spindle checkpoint activation has been implicated in the response to acute anoxia. The activation mechanism is unknown. Our analyses in D. melanogaster demonstrate that oxygen deprivation affects microtubule organization within minutes. The rapid effects of anoxia are identical in wild-type and spindle checkpoint-deficient Mps1 mutant embryos. Therefore, the anoxia effects on the mitotic spindle are not a secondary consequence of spindle checkpoint activation. Some motor, centrosome and kinetochore proteins (dynein, Kin-8, Cnn, TACC, Cenp-C, Nuf2) are rapidly relocalized after oxygen deprivation. Kinetochores congress inefficiently into the metaphase plate and do not experience normal pulling forces. Spindle checkpoint proteins accumulate mainly within the spindle midzone and inhibit anaphase onset. In checkpoint-deficient embryos, mitosis is still completed after oxygen deprivation, although accompanied by massive chromosome missegregation. Inhibitors of oxidative phosphorylation mimic anoxia effects. We conclude that oxygen deprivation impairs the chromosome segregation machinery more rapidly than spindle checkpoint function. Although involving adenosine triphosphate (ATP)-consuming kinases, the spindle checkpoint can therefore be activated by spindle damage in response to acute anoxia and protect against aneuploidies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal Model for Silencing of the Mitotic Spindle Assembly Checkpoint

The spindle assembly checkpoint arrests mitotic progression until each kinetochore secures a stable attachment to the spindle. Despite fluctuating noise, this checkpoint remains robust and remarkably sensitive to even a single unattached kinetochore among many attached kinetochores; moreover, the checkpoint is silenced only after the final kinetochore-spindle attachment. Experimental observatio...

متن کامل

The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint.

The spindle checkpoint prevents cell cycle progression in cells that have mitotic spindle defects. Although several spindle defects activate the spindle checkpoint, the exact nature of the primary signal is unknown. We have found that the budding yeast member of the Aurora protein kinase family, Ipl1p, is required to maintain a subset of spindle checkpoint arrests. Ipl1p is required to maintain...

متن کامل

Regulation of mitotic progression by the spindle assembly checkpoint

Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation in response to improper kinetochore-microtubule interactions, and certain checkpoint proteins help to ...

متن کامل

Requirement of Chromatid Cohesion Proteins Rad21/Scc1 and Mis4/Scc2 for Normal Spindle-Kinetochore Interaction in Fission Yeast

BACKGROUND Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the...

متن کامل

The Caenorhabditis elegans kinetochore reorganizes at prometaphase and in response to checkpoint stimuli.

Previous studies of the kinetochore in mammalian systems have demonstrated that this structure undergoes reorganizations after microtubule attachment or in response to activation of the spindle checkpoint. Here, we show that the Caenorhabditis elegans kinetochore displays analogous rearrangements at prometaphase, when microtubule/chromosome interactions are being established, and after exposure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2007